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We present mathematical and simulation analyses of the below-threshold noisy response of two biophysi-
cally motivated models for excitable membrane due to H. R. Wilson: a squid axon �“resonator”� and a human
cortical neuron �“integrator”�. When stimulated with a low-intensity white noise superimposed on a dc control
current, both membrane types generate voltage fluctuations that exhibit critical slowing down—that is, the
voltage responsiveness to noisy input currents grows in amplitude while slowing in frequency—as the mem-
brane approaches spiking threshold from below. We define threshold unambiguously as that dc current that
renders a zero real eigenvalue for the Jacobian matrix for the integrator neuron, and, for the resonator neuron,
as the dc current that gives a complex eigenvalue pair whose real part is zero. Using a linear Ornstein-
Uhlenbeck analysis, we give exact small-noise expressions for the variance, power spectrum, and correlation
function of the voltage fluctuations, and we derive the scaling laws for the divergence of susceptibility and
correlation times for approach to threshold. We compare these predictions with numerical simulations of the
nonlinear stochastic equations, and demonstrate that, provided the white-noise perturbations are kept suffi-
ciently small, the linearized theory works well. These predictions should be testable in the laboratory using a
current-clamped cell configuration. If confirmed, then the proximity of a neuron to its spike-transition point can
be judged by measuring its subthreshold susceptibility to white-noise stimulation. We postulate that such
temporally correlated fluctuations could provide a means of subthreshold signaling via gap-junction connec-
tions with neighboring neurons.
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I. INTRODUCTION

A. Neural communication

It is generally taken as axiomatic that a neuron encodes
and transmits information about its inputs by generating one
or more action potential “spikes” that propagate along its
axon to synaptically connected receiving neurons. The fact
that a biological in vivo neuron must process its input signals
in the presence of a continuous wash of noise immediately
raises the question: How is the neuron able to encode infor-
mation reliably? This reliability problem has attracted much
attention �1–4� and has lead to the counterintuitive finding
that, in nonlinear systems, moderate levels of noise can both
improve the fidelity of signal transmission �described as
“stochastic resonance”� �5–8� and enhance the periodicity of
an oscillatory component of the system’s behavior �“stochas-
tic coherence”� �9,10�.

The underlying assumption is that only the spiking neu-
rons transmit information, and that subthreshold neurons—
neurons that have not yet received sufficient excitation to
cross the threshold for action potential generation—play no
active role in interneuron communication. Consequently,
most modeling investigations of Hodgkin-Huxley neurons
have focused on the generation and propagation of the action
potential. However, the discovery that adjacent cortical neu-
rons can form intimate bidirectional electrical connections,
known as electrotonic or gap junctions �11,12�, suggests that,
in addition to the well-known neurochemical synaptic junc-

tions, cortical neurons also have access to electrically diffu-
sive channels that permit subthreshold communication be-
tween cells, evidenced as enhanced neuronal synchronization
between cell populations �13�. Gap junctions connect inter-
neuron dendrites to other dendrites, as well as to axons and
to glial cells �13,14�; within a given cortical hemisphere,
there is no apparent limit to the extent of interneuron gap
junction networks �15,16�.

In view of the apparent ubiquity of gap-junction commu-
nications within the cortex, we are motivated to ask the ques-
tion: How might a noise-driven subthreshold neuron signal
to its neighbors that it is about to generate a spike? Using a
linearized stochastic analysis, we will demonstrate that a
near-threshold neuron exhibits output voltage fluctuations
that are “critically slowed” yet exquisitely susceptible to
fluctuations in the input current—that is, the voltage fluctua-
tions become increasingly correlated in time and divergent in
amplitude as threshold is approached from below.

Our analysis of neuron dynamics is based on a linear per-
turbation expansion about the neuron’s near-threshold sta-
tionary state. This is a standard approach which is well-
described by Rinzel and Ermentrout �17�, and in Strogatz’
�18� textbook. Also well-known is the fact that neuron re-
sponse near a bifurcation point becomes critically slowed;
this is a generic result that applies irrespective of whether the
bifurcation is of Hopf or saddle-node type �3,17–19�, and
therefore is expected behavior for the two H. R. Wilson neu-
ron models we analyze here. However, these previous dis-
cussions of critical slowing in neuron models seem to lack
any quantitative treatment of the interaction between the ei-
genvalue structure of the subthreshold neuron and the noisy
environment in which all biological neurons must function.
By combining pertinent stochastic calculus results �derived

*URL: phys.waikato.ac.nz/cortex. Electronic address:
asr@waikato.ac.nz

PHYSICAL REVIEW E 74, 051920 �2006�

1539-3755/2006/74�5�/051920�15� ©2006 The American Physical Society051920-1

http://dx.doi.org/10.1103/PhysRevE.74.051920


by Gardiner �20� for the multivariate Ornstein-Uhlenbeck
process� with our near-threshold eigenvalue analysis, we are
able to derive exact predictions for spectral and temporal
fluctuations in neuron voltage that are valid in the small-
noise limit.

In this paper we present a theoretical analysis of the
white-noise-induced voltage fluctuations in an excitable
membrane near threshold, and we derive scaling laws for the
correlation time and susceptibility as the membrane ap-
proaches spiking threshold.

B. Resonator and integrator membranes

All biophysically realistic models for excitable mem-
branes can be classified according to the nature of the onset

of their spiking behavior. For the squid axon and for auditory
nerve cells, action potential oscillations emerge at a nonzero
frequency when an injected dc stimulus current exceeds a
threshold value; such membranes are classified as being
type-II. In contrast, for type-I membranes �e.g., human cor-
tical neurons� spike oscillations emerge at zero frequency as
the current stimulus crosses threshold. That is, the firing fre-
quency in a type-I neuron can be arbitrarily slow.

This historical taxonomy of neuron types is due to
Hodgkin �21�. A more evocative naming scheme due to
Izhikevich �19� highlights the very different dynamical re-
sponses of the two membranes; thus a type-II neuron is
called a resonator, and a type-I neuron is an integrator. �The
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(a) Squid axon model (resonator)
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FIG. 1. �Color online� Stochastic simulations for the Wilson models for �a� squid axon and �b� human cortical neuron. Framed insets
show detail of the subthreshold voltage fluctuations prior to spike onset. �a� Numbered from bottom to top, the five squid stimulation currents
are Idc=0, 2, 4, 6, and 7.7 �A/cm2. �To improve visibility, the squid traces have been displaced vertically by �4m−20� mV where m
=1, . . . ,5 is the curve number.� �b� Cortical neuron stimulation currents are �bottom to top� Idc=−100, −40, 0, +16, and +21.4752 �A/cm2.
Integration algorithm is semi-implicit Euler-trapezium �39� with time step �t=0.005 ms. To aid intercomparison of the traces, each of the
five simulation runs within a given figure used the same sequence of 40 000 Gaussian-distributed random-number pairs to generate the
(�1�t� ,�2�t�) white-noise perturbations.
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(a) Squid axon model: Staircase
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FIG. 2. Subthreshold impulse response for the Wilson model of a squid-axon membrane �a “resonator”� driven by a staircase-shaped
Idc stimulus current that follows an upwards stair-step pattern towards firing threshold. �a� V-vs-t time series for membrane voltage. �b�
R-vs-V voltage-recovery phase-plot corresponding to the time series in �a�. The initial current at time t=0 is Idc=−4.0 �A/cm2; the current
is stepped upwards at t=30 ms, held steady for 60- ms, then stepped again at 60-ms intervals. Each of the five current increments is
of magnitude �Idc=2.33 �A/cm2. The final current, imposed at t=270 ms, is Idc=7.65 �A/cm2, close to the spiking threshold
Idc
crit�7.77327 �A/cm2. Successive oscillatory impulse responses become increasingly long-lived as the Idc stimulus current approaches

threshold. �Integration was by semi-implicit Euler with time step �t=0.02 ms.�
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aptness of these names will become apparent later in the
paper—for a preview, see Figs. 1–3.�

The distinction between the two membrane types has been
explored by Rinzel and Ermentrout �17� using linear stability
theory to explore the subthreshold behavior, and phase-plane
analysis to trace the nonlinear limit-cycle dynamics that
emerge above threshold. As the stimulus current is increased
towards threshold, the �real part of the� dominant eigenvalue
approaches zero from below. With further increase in stimu-
lus, the eigenvalue changes sign and the resting steady state
becomes unstable—the nerve cell abruptly changes state
from quiescence to active firing. For both types of cell, the
imaginary part of the eigenvalue near threshold is indicative
of the frequency of the spike oscillations that are about to
emerge. Thus for a subthreshold resonator cell, the eigenval-
ues are complex, implying the abrupt emergence of a non-
zero spike-oscillation frequency, while for an integrator both
eigenvalues are purely real, implying a zero-frequency firing
rate.

Real neurons in vivo are exposed to a continuous wash of
noise arising from a range of sources such as thermal fluc-
tuations and spontaneous release of neurotransmitter quanta
at presynaptic vesicles �22,23�. This noisy background will
tend to cause uncertainty in the timing of spike events, but,
in the subthreshold neuron, these small random perturbations
could be useful: not only would they enable the neuron to
explore its nearby state-space, but the neuron’s responsive-
ness to these ever-present Brownian jostlings might provide

a subthreshold means of communication to neighboring neu-
rons. This possibility motivates us to ask the question: Can a
quiescent cell’s nearness to transition be determined from an
examination of its noise-evoked fluctuations? We will find
that—for both types of neuron—the answer is yes: the ap-
proach to transition is predicted to exhibit a phase-transition-
like critical slowing down of the temporal and spectral char-
acteristics of the fluctuation responsiveness. By applying
Ornstein-Uhlenbeck theory to Wilson’s �24� two-variable
resonator and integrator neuron models, we are able to write
down exact expressions for the fluctuation variance, spectral
distribution, and time-correlation functions. As the cell nears
transition, the linear theory predicts that these quantities will
exhibit divergences that herald the imminent and abrupt
phase changeover from small-scale subthreshold linear sto-
chastics to gross-scale nonlinear spiking dynamics. We
verify these near-threshold predictions with stochastic nu-
merical simulations of the full nonlinear equations.

Although multivariate Ornstein-Uhlenbeck theory has
been used to quantify phase transition behavior in cortical
models for induction of anesthesia �25–28�, and within the
cycles of natural sleep �29–31�, to our knowledge this is the
first time this method has been applied to understanding the
nonlinear amplification and susceptibility properties of near-
threshold excitable membranes.

The plan of the paper is as follows. In Sec. II we present
the Wilson models for squid axon and human cortical neu-
ron. We investigate, via simulation, how the responsiveness
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(a) Human neuron model: Staircase
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FIG. 3. Subthreshold impulse response for the Wilson model of a human cortical neuron �an “integrator”� driven by a staircase-shaped
Idc stimulus current that steps upwards, at 60-ms intervals, towards firing threshold. �a� V-vs-t time series for membrane voltage; the asterisk
�in red� marks the point at which the neuron voltage crosses its threshold potential Vcrit�−68.2653 mV—the membrane is about to generate
a fully formed action potential �not shown�. �b� �V-vs-t time series for the decay of membrane voltage back to steady state; obtained by
subtracting the time-series graph of �a� from the theoretical staircase distribution of equilibrium voltages computed for each level of
stimulation current: �V�t�=Vo�Idc�−V�t�. �c� The four decays shown in �b�, replotted to a common time scale that is reset
to zero with each step-change in current, drawn on a logarithmic vertical scale. There are five increments in current, each of size
�Idc=9.2 �A/cm2. The initial current Idc�t=0�=−20.0 �A/cm2; the final current is Idc=26.0 �A/cm2, well above the spiking threshold
Idc
crit�21.4752 �A/cm2. Note that the decay to steady state occurs on two time scales, labeled “fast” and “slow” in graphs �b� and �c�. The

“slow” evolution becomes ever slower as the dc stimulus current approaches spiking threshold. �Integration time step: �t=0.02 ms.�
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of these excitable membranes varies on approach to spiking
threshold when driven �a� by white noise riding on a dc
current, and �b� by a noise-free current staircase, then give a
preliminary explanation in terms of their steady states and
eigenvalue structure. Section III maps the Wilson equations
to an Ornstein-Uhlenbeck model, then applies well-
established stochastic calculus results to give expressions for
the variance, correlation time, and power spectral density of
the membrane fluctuations, and to deduce the near-threshold
scaling laws for the slow time-scale and white-noise suscep-
tibility. Section IV details a series of numerical experiments
that test the theoretical predictions. Finally, in Sec. V, we
describe briefly a plausible laboratory experiment, and we
speculate on the possible biological significance of critical
slowing in near-threshold neurons.

II. MODEL EQUATIONS

This paper focuses on the subthreshold behavior of a pair
of reduced, but biophysically realistic, voltage-recovery
spiking models for excitable membrane presented in 1999 by
Wilson �24�. A brief provenance of the Wilson equations fol-
lows.

In 1985, Rinzel �32� had realized that the fourth-order
Hodgkin-Huxley �HH� �33� equations describing action-
potential generation in the squid giant axon could be simpli-
fied to second order by �a� treating Na+ channel activation as
a “fast,” rapidly equilibrating variable, and �b� combining the
two “slow” variables �K+ channel activation and Na+ channel
inactivation� into a single recovery variable R. These reduced
equations contain most of the biophysical content of the HH
equations, and so remain difficult to analyze because of the
transcendental character of several of their terms. Earlier
modeling due to FitzHugh �34� and Nagumo �35� had fo-
cused on mathematical simplicity. The FitzHugh-Nagumo
equations retain the essential cubic nonlinearity for spike
generation, but discard most of the physiological details of
the HH equations, such as adherence to Ohm’s law and ex-
plicit reference to the Na+ and K+ reversal potentials. Wilson
�24� describes his alternative approach as

“…a more accurate approximation to the Hodgkin-
Huxley equations that rectifies the shortcomings of the
FitzHugh-Nagumo equations while retaining their
mathematical tractability.”

The Wilson equations acquire their simplicity by replacing
Rinzel’s transcendental dependencies by polynomial fits to
the Rinzel isoclines. With a minor change to the form of the
polynomial fits, the Wilson equations are capable of simulat-
ing action potential formation in both squid axon �resonator,
type II� and in cortical neuron �integrator, type I� nerve mem-
branes.

It is for these reasons—versatility, biophysical plausibil-
ity, and mathematical tractability—that we selected the Wil-
son equations as the target for our stochastic analysis. De-
spite this particular choice, we believe that the conclusions
we reach regarding white-noise susceptibility and critical-
slowing behaviors in the subthreshold nerve are not unique
to this model, but rather are general properties shared by all
excitable membranes.

The Wilson equations are expressed in terms of ionic and
injected current flowing through the lipid membrane capaci-
tance to establish a membrane voltage, coupled to a slow
recovery variable that responds to the membrane voltage. We
bring stochasticity to the noise-free Wilson model by adding
white-noise perturbations to the current and to the recovery.

The noise-perturbed Wilson equations read

C
dV

dt
= − gNa�V��V − ENa� − gKR�V − EK� + Idc + �I�1�t� ,

�1a�

�R
dR

dt
= − R + G�V� + �R�2�t� . �1b�

Here, V is the membrane voltage and C is the membrane
capacitance per unit area; R is a �dimensionless� recovery
variable that represents the combined action of K+ channel
opening and Na+ channel closing; and � is the time-constant
for recovery. ENa, EK are the Na+, K+ reversal potentials, and
gNa, gK are the respective ion-channel conductances. The first
equation expresses the total membrane current CdV /dt as the
sum of Na+ and K+ ionic currents in the form
�channel conductance�� �driving voltage�, to which is added
a dc stimulus current Idc plus a white-noise current �I�1�t� of
rms amplitude �I. The second equation describes the noisy
evolution of the recovery variable R to its steady-state value
G�V� perturbed by a small dimensionless white-noise distur-
bance �R�2�t�. By changing the form of G�V� from a linear
polynomial to a quadratic, the Wilson model is capable of
simulating spike generation in either a squid axon �resona-
tor� or in a human cortical neuron �integrator�.

The parameter values and polynomial coefficients for
Wilson’s squid axon and human neuron models are listed in
Table I.

By assumption, the �1,2�t� white-noise sources in Eqs. �1�
are a pair of independent, Gaussian-distributed random time
series of zero mean, infinite variance, with delta-function
correlation in time,

���t�� = 0, �� j�t��k�t��� = � j,k��t − t�� . �2�

In the stochastic numerical simulations that follow, an ap-
proximation for each infinite-variance time series is con-
structed by drawing samples from a zero-mean, unit-variance
Gaussian random number generator, R�0,1�, scaled by the
square-root of the inverse of the time step, �t,

��t� =
Rn�0,1�

��t
, �3�

where t=n�t is discrete time for sample n. By design, these
scaled random numbers have variance 1/�t, rendering the
required delta-function correlation in the continuous limit
�t→0.

Although the inclusion of a single noise source in the
Wilson model would have been sufficient to explore its sto-
chastic response, we have elected to include two independent
noises, �1 and �2, to better represent the biological reality that
there are multiple sources of uncertainty in a living cell, and
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that the uncertainties in currents entering the cell that accu-
mulate to trigger a voltage spike are likely to be independent
of the uncertainties associated with the recovery dynamics
following a spike. The choice of white noise �rather than
correlated noise� is a mathematical convenience that allows
us to compute fluctuation statistics that are exact in the
small-noise limit, but we note that exaggerated responsive-
ness to small perturbation is a robust near-threshold property
that is largely independent of the spectral character of the
perturbation �see Sec. III of �30� for further discussion�.

A. Approach to threshold

The fact that Eqs. �1� are capable of generating realistic
type-I and -II spike trains is already well-established �e.g.,
see Chap. 9 of Wilson’s book �24��, so this aspect will not
capture much attention here. Instead, we will be concentrat-
ing on the “quiet” time during which the subthreshold neuron
appears to be “doing nothing,” and we ask, What can we
learn about the state of the neuron by attending to its sto-
chastic microscale voltage fluctuations? We will find that the
“jitteriness” or responsiveness of an excitable membrane de-
pends on the amplitude of the injected dc current, or, more
precisely, on how close Idc is to a critical threshold value,
Idc

crit.
Figure 1 shows a series of numerical simulations of the

stochastic Wilson equations for both �a� squid axon, and �b�
human cortical neuron, at five values of subthreshold stimu-
lus current Idc. For each membrane type, the white-noise se-
quences generated for �I�1�t� and for �R�2�t� at the lowest
stimulus current were reused in each of the higher stimulus
trials. As the threshold current is approached from below, the
noise-driven squid axon in Fig. 1�a� shows an increasing

tendency to “ring” at a characteristic frequency, with the re-
verberations becoming larger and less damped at larger dc
stimulus values. These subthreshold oscillations break over
into repetitive full-scale spiking when the random fluctua-
tions cause the membrane voltage to cross threshold—see
top trace of Fig. 1�a�.

The Fig. 1�b� time series for the human neuron model
show a very different temporal structure from that obtained
for the squid axon model. Rather than inducing ringing pat-
terns, larger stimulus currents cause the membrane voltage
trace to become “noisier,” with high-frequency fluctuations
riding an ever-slowing low-frequency envelope. When even-
tually the fluctuations carry the membrane voltage across a
critical value, the neuron generates a single isolated action
potential, rather than the cluster of regular spikes seen in the
squid case. Scanning the top trace of Fig. 1�b�, the evolution
of the cortical membrane voltage—from noisy quiescence to
spike generation—reminds us of Carmichael’s �36� descrip-
tion of a state change �in quantum optics� in which the pro-
cess

“…amplifies the initial fluctuations up to the macro-
scopic scale, making it impossible to disentangle a
mean motion from the fluctuations.”

Prior to spike onset, is the slowly varying trend a fluctuation
about the mean, or the mean motion itself? Carmichael tells
us that near a change of state �the birth of an action poten-
tial�, the fluctuation and the mean motion are one and the
same. This insight also holds for the resonator membrane
traces of Fig. 1�a�.

These graphs confirm that the stochastic versions of the
Wilson model retain the respective resonator �i.e., repetitive
regular firing� and integrator �firing at arbitrarily low fre-
quency� behaviors expected of type-II and -I membranes. We
will now demonstrate that enhanced near-threshold resonator
�or integrator� responsiveness is not a uniquely stochastic
property: tuned responsiveness is also an inherent feature of
the noise-free Wilson equations. In fact, we will find that
understanding the eigenvalue structure of the noiseless Wil-
son equations is key to understanding the membrane’s
current-dependent sensitivity to noisy stimulation.

B. Staircase impulse response

To demonstrate the squid model’s inherent responsiveness
to abrupt changes in subthreshold stimulus current, we set
the noise amplitudes �I and �R to zero in Eqs. �1�, then drive
the Wilson type-II model with a staircase-shaped injected
current. The initial stimulus current Idc�t=0� is −4 �A/cm2

�i.e., a conventional current of magnitude 4 �A/cm2 directed
outwards from the nerve cell�; at t=30 ms the current is reset
to −1.67 �A/cm2, held at this level for 60 ms, then stepped
consecutively to +0.66, +2.99, +5.32, and +7.65 �A/cm2 at
successive 60-ms intervals. There are a total of five equal
increments in stimulus current during the 300-ms duration of
the numerical experiment. The results appear in Fig. 2.

The time series in Fig. 2�a� shows the V�t� membrane
voltage response to each of the five current steps, and �b�
shows the corresponding phase plot obtained by plotting V�t�
against R�t�, the time series for the recovery variable. It is

TABLE I. Definitions and constants for the Wilson �24� model
for squid axon �second column� and human cortical neuron �third
column� with additive noise. Note that both here and in Eq. �1� the
reversal potentials �ENa,EK� and the membrane voltage V are ex-
pressed in decivolts, thus they must be scaled by 100 to retrieve
their millivolt values �e.g., ENa=0.48= +48 mV�. Similarly, each
current must be scaled by 100 to retrieve its physical value in
�A/cm2. Idc

crit is the threshold input current for spike generation.

Symbol Squid Human Unit

C 0.8 1.0 �F/cm2

�R 1.9 5.6 ms

ENa, EK 0.55, −0.92 0.48, −0.95 102 mV

gNa�V� g1�V�a g2�V�b mS/cm2

gK 26.0 26.0 mS/cm2

G�V� G1�V�c G2�V�d

�I 0.001 0.01 102 �A cm−2�ms�1/2

�R 0.001 0.01 102�ms�1/2

Idc
crit 	0.0777327 	0.214752 102 �A/cm2

ag1�V�=32.63V2+47.71V+17.81.
bg2�V�=33.80V2+47.58V+17.81.
cG1�V�=1.35V+1.03.
dG2�V�=3.30V2+3.798V+1.267.
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very clear from these graphs that �i� the type-II membrane
responds to an impulsive current change with a characteristic
ringing pattern; �ii� the ringing becomes more persistent as
the stimulus current approaches the threshold for spiking;
and �iii� the amplitude of the membrane response increases
strongly as Idc approaches threshold. Note that after the fifth
current step at t=270 ms, Idc is almost at the threshold value
of Idc

crit�7.77327 �A/cm2, and the oscillation decays ex-
tremely slowly �time constant 	250ms�, the heavy trace ap-
pearing in �b� actually being an exceptionally gradual in-
wards spiral. For Idc� Idc

crit, the phase plot would spiral
outwards �not shown here�, eventually evolving into a large-
scale nonlinear limit cycle that defines the action potential. If
Idc= Idc

crit, the membrane oscillation would be delicately bal-
anced between growth and decay, and, in principle, the os-
cillation would persist forever. In this limit, the squid mem-
brane has become an ideal resonator.

We now perform a closely similar staircase impulse-
response experiment on the noiseless Wilson type-I neuron.
See Fig. 3. The cortical neuron staircase response shows
none of the overshoot-ringing structure that dominates the
squid response. Instead, we see in Fig. 3�a� that the type-I
membrane responds to a step change in current on two dis-
tinct time scales. The initial response is very fast and rapidly
decaying, appearing as the near-vertical edge immediately
following the step events at t=30, 90, 150, 210, and 270 ms.
This is followed by a much slower exponential decay, with a
time constant that becomes more prolonged for current steps
that take the membrane closer to spiking threshold. This dual
time-scale structure is made more visible in Fig. 3�b� where
we have subtracted the staircase of equilibrium voltages
from the V�t� time series. Also evident in Fig. 3�b� is the
increase in membrane sensitivity to step perturbations as the
injected current approaches threshold. In Fig. 3�c� we replot
the logarithm of the �V residuals against a lag-time axis that
is reset to zero with each step. The four 1 /e slow-decay
times, extracted from the inverse-slopes, are �1� 9.7; �2� 10.6;
�3� 12.2; and �4� 17.2 ms.

C. Eigenvalue analysis

Figures 2 and 3 show that, as the dc stimulus current Idc is
increased towards spiking threshold, the two classes of ex-
citable membrane exhibit stronger and more persistent step-
evoked impulse responses, with divergence in both charac-
teristics �amplitude and duration� at threshold. This inverse
sensitivity to distance from threshold can be explained in
terms of the Idc-dependent eigenvalue structure of the linear-
ized Wilson equations.

The eigenvalue analysis proceeds as follows. We zero the
noise amplitudes �I, �R, and write Eqs. �1� in their noise-free
form,

F1�V,R� =
1

C
�− gNa�V��V − ENa� − gKR�V − EK� + Idc� ,

�4a�

F2�V,R� =
1

�R
�− R + G�V�� , �4b�

where F1
dV /dt and F2
dR /dt. We fix a value for the Idc
stimulus current, set to zero the time-derivatives dV /dt,

dR /dt, and solve numerically the resulting �polynomial�
equations �4�, giving the steady-state coordinate �Vo ,Ro� for
membrane voltage and recovery variable. We then compute
the 2�2 Jacobian matrix of partial derivatives, J, evaluated
at this �Vo ,Ro� equilibrium point,

J = �
�F1

�V

�F1

�R

�F2

�V

�F2

�R
�

�Vo,Ro�

. �5�

The eigenvalues of J predict the exponential time course
�growth or decay� for small fluctuations about the �Vo ,Ro�
equilibrium point, and hence its stability: if both eigenvalues
are real and negative �or are complex with negative real
parts�, then fluctuations will decay and the equilibrium point
is stable; if either eigenvalue is positive �or, for complex
eigenvalue pairs, if the pair has a positive real part�, then the
equilibrium is unstable.

Note that these eigenvalues are only valid for a given
equilibrium point. Because the location of the steady-state
coordinate is determined by the magnitude and direction of
the injected dc current, any alteration in Idc mandates a re-
calculation of the steady-state, its Jacobian, and the eigenval-
ues it owns.

Figures 4 and 5, respectively, show the distribution of
steady states and eigenvalues for the Wilson models for the
squid axon �resonator� and human neuron �integrator� excit-
able membranes. For the squid, the eigenvalues 	1 and 	2
form a complex-conjugate pair, 	1,2=−
± i�o, with a sign
change in 
, the damping, when the stimulus current crosses
the critical value Idc

crit�7.7733 �A/cm2. For Idc� Idc
crit, the

equilibrium point is stable, and perturbations are predicted to
decay with a 1/e time constant Tslow=1/
, showing damped
oscillations, of frequency fo, determined by the imaginary
part of the eigenvalues: f0=�o /2; these predictions are
consistent with the ringing behaviors recorded in the stair-
case impulse responses of Fig. 2. For Idc� Idc

crit, the equilib-
rium point is unstable, so any perturbation will grow expo-
nentially, evolving into a full-scale action-potential spike. At
Idc= Idc

crit, damping vanishes, so Tslow→�; thus the linearized
theory predicts the precarious possibility of a state delicately
poised between either infinitely slowed quiescence or pro-
gression to firing.

Figure 5 shows the corresponding distribution of steady
states and eigenvalues for the Wilson model for the mamma-
lian cortical neuron. Unlike the squid axon, the cortical neu-
ron possesses up to three steady states for a given value of
stimulus current; at each of these three �Vo ,Ro� fixed points,
we find that both eigenvalues are real. The Fig. 5�b� eigen-
value map shows that the dominant eigenvalue changes sign
at a critical current Idc

crit�21.475 �A/cm2; this occurs at the
lower turning point in the S-bend of steady states in panel
�a�. Stimulus currents higher than this critical value will de-
stabilize the membrane, leading to the firing of action poten-
tials. For Idc� Idc

crit, only the lower branch of equilibrium
points is stable, and, along this branch, perturbations are pre-
dicted to decay to rest over two quite distinct time-scales,
Tslow=−1/	1 and Tfast=−1/	2. This is consistent with the
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two-exponential decays seen in the Fig. 3 staircase response.
As is the case for the squid membrane, the Tslow slow time
scale diverges to infinity as Idc→ Idc

crit from below. We will
see, in the stochastic analysis which follows, that this diver-
gence in the slow time scale controls the growth in fluctua-
tion amplitude when an excitable membrane is disturbed by
white noise.

III. SUBTHRESHOLD STOCHASTIC THEORY

We assume that the membrane is resting at the quiescent
subthreshold equilibrium point �Vo ,Ro� defined by a preset
level of injected current Idc entering the soma. Following
Eqs. �1�, we impose a pair of independent low-intensity
white noises as additive perturbations: �I�1�t� adds noise to
the injected current, and �R�2�t� imposes a random jitter to
the Na+/K+ recovery. Provided that the noise intensities are
sufficiently weak, the noise-evoked subthreshold fluctuations
in recovery variable R and membrane voltage V will be
rather small, so a linear analysis of the Wilson equations
should give a valid description here. By fluctuation, we mean
the instantaneous deviation away from the �Vo ,Ro� equilib-
rium:

v�t� = V�t� − Vo, �6a�

r�t� = R�t� − Ro. �6b�

It is important to emphasize that if the Idc stimulus current is
altered, then the �Vo ,Ro� equilibrium point for the fluctua-
tions must be recomputed, since this reference coordinate,
being determined by intersection of the isoclines of Eqs. �1�,
varies with Idc.

We linearize Eqs.�1� about a �subthreshold� steady state,
giving the matrix equation,

d

dt
�v

r
� = − A�v

r
� + �D��1�t�

�2�t� � , �7�

where A, the 2�2 drift matrix, is equal to the negative of the
Jacobian matrix, J, evaluated at the nominated steady state,
i.e., J=−A. Here, D is the constant diffusion matrix,

D = ��I
2/C2 0

0 �R
2/�R

2 � . �8�

A. Covariance matrix

Equations �7� define a two-dimensional Ornstein-
Uhlenbeck �Brownian motion� process. Following Gardiner
�20� we can immediately write down exact expressions for
the variances and covariances of the fluctuation time series
for membrane voltage v and recovery r. Defining the cova-
riance matrix as

� 
 �var�v� cov�v,r�
cov�r,v� var�r� � , �9�

its theoretical value can be computed exactly from

FIG. 4. �Color online� Steady states and eigenvalues for the
Wilson type-II squid membrane in the vicinity of the threshold
for firing. �a� Steady-state membrane voltage as a function of
dc stimulus current. When stimulus current exceeds threshold,
Idc
crit�7.77327 �A/cm2, the steady state becomes unstable with

respect to small perturbations, and full-scale action potential spikes
emerge �see top trace of Fig. 1�a��. �b� and �c� Near threshold,
the two eigenvalues for the linearized Wilson squid axon form a
complex-conjugate pair, 	1,2=−
± i�o, where 
 is the damping
rate constant, and � /2 is the oscillatory frequency. For Idc� Idc

crit,
the damping is positive, and the squid impulse response shows
damped oscillations; for Idc� Idc

crit, the damping is negative, the
oscillations explode exponentially, and evolve into large-scale limit
cycles �action potentials�. When Idc= Idc

crit, the damping is precisely
zero, and the small-scale subthreshold ringing patterns persist
forever. �d� The inverse of the decay rate defines the time scale
over which perturbations about steady state die away: Tslow=1/


�for 
�0�. At the critical point, 
→0 and Tslow→�. This diver-
gence curve determines the growth envelope for the voltage fluc-
tuations in a white-noise-driven squid axon approaching threshold
�see Fig. 6�a��.
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� =
det�A�D + �A − tr�A�I�D�A − tr�A�I�T

2 tr�A�det�A�
, �10�

where I is the 2�2 identity matrix; det�·� and tr�·� are the
determinant and trace operators. Here we will focus on
var�v�, the variance of the voltage fluctuations. Expanding
the matrix multiplications of Eq. �10� and extracting the �11
entry gives

�11 
 var�v� =
det�A�D11 + A22

2 D11 + A12
2 D22

2 tr�A�det�A�
. �11�

From standard matrix theory �37�, we can express the trace
and determinant expressions, respectively, as the sum
and product of 	1,2, the eigenvalues of the Jacobian matrix
J=−A,

tr�A� = − tr�J� = − �	1 + 	2� ,

det�A� = det�J� = 	1	2,

giving a final form for the fluctuation variance that makes
clear its crucial dependence on the eigenvalue structure of
the excitable membrane’s equilibrium Jacobian,

var�v� =
	1	2D11 + A22

2 D11 + A12
2 D22

− 2�	1 + 	2�	1	2
. �12�

We will see that for both resonator and integrator excit-
able membrane types, the approach to threshold will be as-
sociated with a divergent growth in fluctuation power, but
with scaling laws and spectral distributions that are quite
distinct.

1. Resonator approach to threshold

The Jacobian for the subthreshold resonator �type-II�
membrane has a pair of complex-conjugate eigenvalues of
the form 	1,2=−
± i�o, with damping 
�0. Equation �12�
gives

var�v�Res =
�
2 + �o

2�D11 + A22
2 D11 + A12

2 D22

4
�
2 + �o
2�

, �13�

which, in the limit of small damping, reduces to

var�v�Res �
1




�o
2D11 + A22

2 D11 + A12
2 D22

4�o
2 . �14�

From Fig. 4�b�, the damping goes linearly to zero as the dc
stimulus current approaches its critical value Idc

crit, thus our
Ornstein-Uhlenbeck theory predicts that the variance of the
resonator voltage fluctuations will diverge to infinity at the
threshold for spiking:

Idc → Idc
crit ⇒ 
 → 0 ⇒ var�v�Res → � .

If we define a nondimensional distance to threshold as �
= �Idc

crit− Idc� / Idc
crit, then we can deduce that the scaling law for

this divergence will be

var�v�Res 	
1

�
. �15�

This follows because var�v�Res	1/
, and, near threshold,

	 Idc.

2. Integrator approach to threshold

The Jacobian for the subthreshold integrator �type-I�
membrane has a pair of real eigenvalues, both negative: 	2
�	1�0. On approach to spiking threshold, the dominant
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FIG. 5. �Color online� Steady states and eigenvalues for the
Wilson type-I cortical neuron in the vicinity of the firing threshold.
�a� S-bend distribution of steady-state membrane voltages as a func-
tion of dc stimulus current. Only the bottom branch �solid black� is
stable with respect to small perturbations; the middle and top
branches �drawn with a thick dashed red line� are unstable. For a
neuron started on the bottom branch, an increase in Idc beyond the
threshold point Idc

crit�21.4752 �A/cm2 �marked with a “o” symbol�
destabilizes the membrane, and a full-scale spike is generated �see
top trace of Fig. 1�b��. �b� and �c� Below threshold, both eigenval-
ues for the linearized Wilson cortical neuron are real and negative,
with the dominant eigenvalue, 	1, approaching zero from below as
Idc→ Idc

crit. For the midbranch steady states, 	1�0 and 	2�0, defin-
ing a saddle instability. Along the top branch, both eigenvalues are
positive. �d� and �e� Below threshold, the dominant and second
eigenvalues, respectively, determine the slow and fast time scales
for relaxation back to steady state: Tslow=−1/	1, Tfast=−1/	2, with
Tslow→� as 	1→0. The divergence of the slow time scale is re-
sponsible for the divergent growth in dc fluctuation power as the
white-noise-driven integrator neuron approaches spiking threshold
�see Fig. 8�.
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eigenvalue tends to zero from below: 	1→0− �see Fig. 5�b��.
In the limit of small 	1, Eq. �12� gives

var�v�Int �
1

− 	1

A22
2 D11 + A12

2 D22

2	2
2 , 	1 � 0. �16�

Thus, like the squid resonator, linearized theory predicts the
cortical integrator membrane will become infinitely respon-
sive to white-noise perturbations, with the variance of the
voltage fluctuations diverging to infinity at the threshold for
spiking:

Idc → Idc
crit ⇒ 	1 → 0− ⇒ var�v�Int → � .

However, unlike the squid axon, the fluctuation diver-
gence for the cortical neuron will follow a fractional power-
scaling law:

var�v�Int 	
1
��

. �17�

This claim is justified as follows. For the type-I neuron, the
threshold for spiking occurs when two sets of steady states—
one set from the unstable saddle on the midbranch, the other
set from the line of stable nodes on the bottom branch—
come together at the lower turning point of the S-bend of
steady states. This point, marked “o” in Fig. 5�a�, is the
saddle-node annihilation point �or, viewed in the direction of
decreasing current, is the saddle-node bifurcation point�. Be-
cause this bifurcation point straddles the two solution-
branches, the approach to threshold will show a locally para-
bolic �40�—rather than linear—relationship between steady-
state voltage and �, the displacement of Idc from its threshold
value, �= �Idc

crit− Idc� / Idc
crit. The zoomed inset in Fig. 5�b� also

exhibits a locally parabolic relationship between the do-
minant eigenvalue 	1 and displacement from threshold:
	1	−��. This establishes the scaling law �17� for integrator-
neuron divergence.

We note that this square-root scaling law is a very general
feature of systems that are close to a saddle-node
bifurcation—see p. 99 of Strogatz �18�.

3. White-noise susceptibility

Referring to Eq. �12�, we see that the fluctuation power
output of a subthreshold membrane depends explicitly on the
intensities, D11 and D22, of the �1�t� and �2�t� white-noise
inputs. In order to quantify the sensitivity of the membrane
to white-noise stimulation, we divide through by D11 to give
a form of transfer ratio that we define as the white-noise
susceptibility, �:

� 

�11

D11
=

	1	2 + A22
2 + kA12

2

− 2�	1 + 	2�	1	2
, �18�

where we have assumed D22/D11=k, a constant; that is, the
intensities for the �1�t� and �2�t� sources are in fixed ratio.
This assumption is true for our stochastic implementation of
the Wilson type-I and -II membranes, for which, from Eq.
�8�, we obtain k= ��RC /�I�R�2.

From Eq. �18� we see that the divergence properties are
unchanged by the D11 normalization, consequently the scal-

ing laws for resonator and integrator susceptibility match
those previously stated in Eqs. �15�–�17� for resonator and
integrator variance. See Table II for a summary.

B. Time-correlation matrix

The 2�2 steady-state time-correlation matrix for the time
series of v and r fluctuations is defined,

C��� 
 �cov�v�0�,v���� cov�v�0�,r����
cov�r�0�,v���� cov�r�0�,r���� � , �19�

where � is the lag-time. For an Ornstein-Uhlenbeck process,
Gardiner �20� gives an exact expression for C��� as the prod-
uct of the matrix exponential exp�−A�� with the covariance
matrix �:

C��� = e−A��, � � 0 �20�

with symmetry property C�−��= �C����T. While Eq. �20� is
computationally convenient �and, in fact, was used to com-
pute the theoretical autocorrelation functions displayed in
Figs. 7 and 9�, an alternate form that better lends itself to
insight can be derived by expressing the matrix exponential
in terms of the eigenvalues 	1,2 and eigenvectors r�1,2 of J=
−A, the Jacobian matrix evaluated at equilibrium. Then Eq.
�20� becomes

C��� = �r�1 r�2��e	1� 0

0 e	2���r�1 r�2�−1� . �21�

Expanding, then selecting the terms for the C11��� element to
extract the autocorrelation function for the v�t� fluctuations
in membrane voltage, we obtain,

C11��� = c1e	1� + c2e	2� �integrator neuron� �22�

indicating that the autocorrelation function for the voltage
fluctuations is a linear combination of two exponential-decay
processes whose rate constants are the eigenvalues of the
Jacobian matrix. �The relative weighting of the exponentials,
given by c1 and c2, depends on the �11 and �21 entries of the
� covariance matrix, and on the components of the r�1 and r�2
eigenvectors—but we do not state their explicit form here.�

Equation �22� is directly applicable to the integrator neu-
ron whose subthreshold Jacobian owns a pair of real eigen-

TABLE II. Summary of dynamic properties and scaling laws
for the white-noise-driven subthreshold squid membrane and hu-
man neuron models. Here, � is the dimensionless distance below
threshold: �= �Idc

crit− Idc� / Idc
crit. The susceptibility, �, quantifies the

fluctuation-power responsiveness of the membrane to white-noise
stimulation: �=�11/D11.

Property Squid Human

Equalities

Damping, 
 −Re�	1,2� −	1

Resonant frequency, �o −Im�	1,2  � 0

Scaling laws

Correlation time, Tslow 	1/� 	1/��

Susceptibility, � 	1/� 	1/��
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values, both negative: 	2�	1�0. On approach to threshold,
the dominant eigenvalue goes to zero, and the leading expo-
nential term exp�	1�� will exhibit critical slowing, becoming
infinitely persistent at threshold when 	1 is precisely zero.
Since this linear analysis assumes small fluctuations, Eq.
�22� tells us the limits of its validity: when the membrane
crosses threshold and 	1 goes positive, the voltage autocor-
relations will explode exponentially, violating the smallness
assumption. At this point the nonlinear dynamics take over,
and a spike is born. Since 	1�0 defines the region of spike
generation, and 	1�0 defines the region of stable stochas-
tics, the case 	1=0 is very special, since not only does it
mark the extremum of critically slowed microscale linear
stochastics, but it also identifies the seed-point for the gen-
esis of gross-scale nonlinear dynamics.

For the squid resonator, the eigenvalues associated with
its subthreshold Jacobian are a complex-conjugate pair 	1,2
=−
± i�o, with 
�0. After a little algebraic manipulation,
Eq. �22� can be reworked into the form

C11��� = c1e−
� cos��o�� �squid membrane� . �23�

Thus the autocorrelation function for the squid voltage fluc-
tuations corresponds to the impulse response of a damped
oscillator of frequency �o and damping 
. As the squid axon
approaches threshold, 
→0, and the ringing becomes more
and more long-lived, becoming infinitely persistent at thresh-
old when 
=0. Above threshold, 
 changes sign and the
exponential term explodes, signaling the demise of the linear
theory as the membrane changes phase from stochastic qui-
escence to active spiking.

C. Spectrum matrix

The Fourier transform of C��� gives the 2�2 spectrum
matrix �20�,

S��� =
1

2
�

−�

�

e−i��C���d� =
1

2
�A + i�I�−1D�AT − i�I�−1.

�24�

Here we will focus on the S11��� component of the spectral
matrix, since this element gives the power spectral density of
the voltage fluctuations. Expanding Eq. �24� and extracting
the S11 terms gives

S11��� =
1

2

A22
2 D11 + A12

2 D22 + D11�
2

�	1	2 − �2�2 + �	1 + 	2�2�2 . �25�

1. Cortical-neuron spectrum

For the subthreshold cortical neuron, the Jacobian eigen-
values are real and negative, 	2�	1�0. On approach to
spiking threshold, the dominant eigenvalue tends to zero,
and, at threshold, Eq. �25� predicts the limiting spectrum,

lim
	1→0

S11��� =
1

2

A22
2 D11 + A12

2 D22 + D11�
2

�4 + 	2
2�2

�integrator neuron� �26�

which is divergent at �=0. This pole at zero frequency
means that at threshold, the integrator neuron becomes reso-
nant at dc. This is consistent with the time-domain analysis
which showed that the fluctuation autocorrelation function
will be dominated by a single exponential decay of infinite
persistence, implying that its Fourier transform will be a
delta-function at zero frequency.

2. Squid-axon spectrum

The subthreshold squid axon has a pair of complex con-
jugate eigenvalues, 	1,2=−
± i�o, with 
�0. Substituting in
Eq. �25� gives
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FIG. 6. Model squid-membrane subthreshold response to white-noise perturbation as a function of Idc stimulus current. �a� Solid black
curves show predicted ±3� limits for voltage excursions away from equilibrium; each vertical gray trace shows actual maximum excursions
recorded in a 200-ms stochastic simulation run of the Wilson Eqs. �1� at each of 2000 settings for stimulus current ranging from
−10.0 to +7.77 �A/cm2. Fluctuation intensity grows strongly on approach to the critical current required for spike generation. �b� Theo-
retical spectral response to white-noise driving for the squid axon model. The double-sided spectrum develops a pronounced and increasingly
narrow resonance at 	±360 Hz as the critical current is approached from below.
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S11��� =
1

2

A22
2 D11 + A12

2 D22 + D11�
2

�
2 + �o
2 − �2�2 + 4
2�2 . �27�

At spiking threshold the damping goes to zero, so the limit-
ing fluctuation spectrum will be

lim

→0

S11��� =
1

2

A22
2 D11 + A12

2 D22 + D11�
2

��o
2 − �2�2 �squid axon�

�28�

implying infinite power at �=�o.

IV. STOCHASTIC SIMULATION RESULTS

To test the predictions of the subthreshold stochastic
theory, we ran a series of numerical simulations of the noise-
perturbed Wilson equations �1�, both for the squid-axon reso-
nator �see second column of Table I� and for the cortical-
neuron integrator �third column of Table I�.

A. Squid-axon stochastic response

Figure 6�a� summarizes the outcome of 2000 separate
200-ms stochastic realizations of the squid-axon Wilson
model. Each run was performed at a different setting of the
Idc injected current, with stimulation values ranging from
−10.0 to +7.77 �A/cm2. For each realization, the maximum
and minimum instantaneous voltages detected during the
200-ms experiment were recorded and plotted as a gray ver-
tical line whose end points, �V+ and �V−, indicate the largest
positive and largest negative deviations away from the
Idc-determined Vo steady state: �V+= �Vmax−Vo�, and �V−

= �Vmin−Vo�. Superimposed in black are the theoretical ±3�
curves, indicating the three-standard-deviation limits of the
probability density function for the noise-induced membrane
voltage fluctuations, where the standard deviation is com-
puted from Eq. �11� as �=��11.

The expected growth in voltage fluctuations is clearly evi-
dent in Fig. 6�a� as a yawning cornucopia that widens
abruptly as stimulus current approaches the critical value
Idc

crit�7.77327 �A/cm2. The agreement between nonlinear
simulation �gray� and Ornstein-Uhlenbeck theory �black� is
very gratifying, although we note that a fairer test might have
been to run longer simulations when the injected current is
close to the Idc

crit threshold in order to better capture the large
deviations that occur on increasingly slowed time scales. We
should also note that, towards the extreme right of the graph,
the elevated membrane sensitivity sometimes resulted in the
formation of one or more full-scale spikes, causing ex-
tremely large deviations—about two orders of magnitude
larger than the scale of the graph. Clearly the linear theory is
not applicable for such spike events. Notwithstanding these
“outliers,” provided the membrane remains in its subthresh-
old regime, linear Ornstein-Uhlenbeck theory works well.

From Eqs. �27� and �28�, we expect the squid-membrane
fluctuations to exhibit increasing spectral coloration or “ring-
ing” as Idc approaches threshold. This trend towards increas-
ingly narrow resonances at �o /2� ±360 Hz is illustrated
in the family of double-sided spectral-amplitude curves for

ṽrms=�S11 plotted in Fig. 6�b�. �Note that the actual spiking
frequency of 	175 s−1 �see top trace of Fig. 1�a�� that
emerges once threshold has been crossed is not well-
estimated from our small-fluctuations linear theory—this is
because spiking is a gross, highly nonlinear dynamical be-
havior.�

Rather than comparing the Fig. 6�b� ideal squid spectra
against an experimental estimate derived from many aver-
aged Fourier transforms of the simulation time series, we
have opted instead to gather the equivalent information in the
time-domain via the autocorrelation function. See Fig. 7.

We selected three levels of injected current, and, for each
level, ran three 1000-ms nonlinear stochastic simulations of
the Wilson squid equations, then computed the autocorrela-
tion function for the time series of the zero-mean voltage
fluctuations �i.e., deviations about equilibrium�. The curves
displayed in bold red �colored gray in print version� are the
three-run averages obtained using MATLAB’s xcorr�� function,
and the thin-black curves are the C11��� theoretical autocor-
relation predictions �see Eqs. �20� and �23��. The dashed
curve shows the exp�−
�� decay envelope predicted by the
real part of the squid eigenvalue, 
=−Re�	1,2�. The match
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FIG. 7. �Color online� Autocorrelation graphs for white-noise-
driven subthreshold squid axon �resonator� model at three levels of
Idc injected current: �a� 6.0; �b� 0.0; and �c� −6.0 �A/cm2. Black
curves show the C11��� Ornstein-Uhlenbeck predictions; the thick-
red curves show numerical results computed from the average of
three independent 1000-ms stochastic simulation runs for each
value of Idc. The dashed curve labeled “slow” is the decay envelope
exp�−
��, where 
=−Re�	1,2�, predicted from the real part of the
eigenvalue for the linearized squid axon. Consistent with the noise-
free impulse runs of Fig. 2, the “slow” time-constant Tslow=1/

diverges towards infinity as the stimulation current increases to-
wards the threshold value Idc

crit�7.77327 �A/cm2. The simulation
time step is �t=0.05 ms.
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between theory and experiment is excellent, and we conclude
that the subthreshold Wilson squid model behaves like a
narrow-band damped oscillator whose damping diminishes
towards zero as Idc approaches spiking threshold.

B. Cortical-neuron stochastic response

Figures 8 and 9 are the cortical-neuron response curves
corresponding to the squid-axon curves of Figs. 6 and 7.
Figure 8�a� summarizes the voltage fluctuation extrema reg-
istered during 2000 independent stochastic trials of the Wil-
son cortical neuron, each trial lasting 200 ms, and stimulated
at one of 2000 levels of injected dc current ranging from
−10.0 to +21.475 �A/cm2. The increased susceptibility of
the neuron to white-noise perturbations is clearly evident as
Idc approaches the critical value Idc

crit�21.4752 �A/cm2, and
is well-matched by the divergent ±3� theoretical trend lines
predicted from Eqs. �11� and �12�. Here, �
��11=�var�v�.

The Fig. 8�b� theoretical spectra from Eq. �25� for the
cortical neuron fluctuations show a nearness-to-threshold
sensitivity that is very similar to that seen in the squid axon
�Fig. 6�b��, apart from the significant fact that the location of
the resonance pole is now at zero frequency. This leads to the
provocative idea that a type-I integrator membrane can be
thought of as a type-II resonator that “resonates” at dc.

The autocorrelation graphs �Fig. 9, thick red curves� de-
rived from nonlinear simulations of the Wilson cortical neu-
ron agree nicely with the Ornstein-Uhlenbeck predictions of
Eqs. �20� and �22� �black curves�, but considerable care and
attention to detail were required to secure this agreement.
�See Appendix A and Table III for technical details.� Both
sets of curves show a rapidly decaying “needle” riding on a
much more slowly decaying “shoulder.” These two features
are set by 	2 �the more negative eigenvalue� and 	1 �the
dominant, less negative eigenvalue�, respectively. As the in-
jected current approaches spiking threshold �panels �c�
→ �b�→ �a��, the autocorrelation becomes dominated by the

shoulder, rising in amplitude by �three orders of magnitude,
and becoming much more nearly horizontal as the Tslow cor-
relation time increases from 10.8 ms �panel �c�� to 96.2 ms
�panel �a��. The trend towards a critically slowed, infinitely
persistent autocorrelation function at the Idc→ Idc

crit limit is
clear. At this unreachable extremum, the autocorrelation is
pure dc, consistent with its Fourier transform being a delta-
function at zero frequency.

V. CONCLUSIONS AND DISCUSSION

In this paper we have offered a careful analysis of the
subthreshold �nonspiking� behavior of a pair of biophysically
motivated excitable membrane models developed by H. R.
Wilson: the squid axon, a type-II “resonator;” and the human
cortical neuron, a type-I “integrator.” We have shown that
these two membrane types display very distinctive voltage
impulse responses when driven towards spiking threshold by
a staircase-shaped injection current. For the squid model, the
rising edge of each current step provokes a ringing voltage

TABLE III. Cortical �integrator� neuron time scales and numeri-
cal simulation settings for the three autocorrelation graphs shown in
Fig. 9. The “noise attenuation” entries are the scale divisors applied
to the variances of the two white-noise sources prior to simulation,
then applied afterwards as compensatory multipliers to the experi-
mentally determined autocorrelation measurements.

Value Figure 9�c� Figure 9�b� Figure 9�a� Unit

Stimulus, Idc 0.0 20.0 21.4 �A/cm2

Predicted Tslow 10.8 26.3 96.2 ms

Predicted Tfast 0.079 0.14 0.18 ms

Time step, �t 0.02 0.05 0.05 ms

Integration time 1000 4000 10 000 ms

Noise attenuation 1 100 1000
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FIG. 8. Model cortical-neuron subthreshold response to white-noise perturbation as a function of stimulus current. �a� Caption as for Fig.
6�a�, but with stimulus current for cortical neuron ranging from −10.0 to +21.475 �A/cm2. Black curves are ±3� predictions; gray
background verticals indicate fluctuation extrema recorded from 2000 independent numerical experiments. �b� The theoretical spectrum for
subthreshold cortical neuron shows a strong resonance developing at zero frequency as threshold current for spiking is approached from
below.
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overshoot whose amplitude and persistence increase nonlin-
early as the current approaches threshold. In contrast, the
cortical neuron tends to smoothly integrate each step change
in stimulus current, with a response time that becomes ever
slower as the stimulus approaches threshold. In both cases, it
is the altering eigenvalue structure that is causing the dra-
matic prolongation �“critical slowing”� of response time,
with infinite response times predicted when the dominant
eigenvalue �or, for the type-II membrane, when the real part
of the eigenvalue pair� touches zero.

These impulse properties are preserved when the staircase
stimulus current is replaced by low-level white noise super-
imposed onto a constant level of injected current, Idc. By
linearizing about a given Idc-determined subthreshold equi-
librium point, we reformulated the stochasticized Wilson
equations into a two-dimensional Ornstein-Uhlenbeck pro-
cess, and were then able to write down exact analytic expres-
sions for the noise-induced fluctuation variance, autocorrela-
tion, and spectrum, and to deduce scaling laws for the
divergences in correlation time and white-noise susceptibil-
ity. We demonstrated excellent agreement between the pre-

dicted fluctuation statistics and those measured from a series
of stochastic simulations of the Wilson equations.

Given that spike generation is an inherently nonlinear pro-
cess, is it reasonable to expect a linear theory to give good
results for a noise-driven subthreshold neuron that is arbi-
trarily close to spiking threshold? After performing a large
number of stochastic trials for the H. R. Wilson mammalian
neuron sitting just below threshold, we have found that, pro-
vided the noise is sufficiently small, linear theory works
well. However, for moderate noise levels, the nonlinear
terms tend to grow, eventually swamping the linear terms
and leading inexorably to the generation of a spike. �See
Appendix B for details of the full Taylor-series analysis of
the Wilson mammalian neuron.� We conclude that linear
theory is appropriate for small subthreshold fluctuations;
when fluctuations become sufficiently large that the nonlin-
ear effects become significant, the neuron is about to change
state from small-scale local stochastics to gross-scale nonlin-
ear limit-cycle dynamics.

We see no reason why the critical slowing ideas reported
here could not be tested in a neurophysiological laboratory
that is equipped to measure the membrane voltage of a
current-clamped neuron. The nonstandard aspect would be
the requirement for white-noise to be added to the dc
current—although this may not be necessary if there is suf-
ficient “biological” background noise present in the cell. For
a constant level of white-noise perturbation, we would ex-
pect to see nonlinear increases in correlation time and sus-
ceptibility �cell responsiveness� as the threshold point for
firing is approached.

These findings may have biophysical significance. The
slowed voltage fluctuations generated by an integrator neu-
ron near threshold could “recruit” nearby neurons—possibly
via the continuous diffusive coupling afforded by electrical
gap junctions �38�—leading to population-wide subthreshold
fluctuations that are correlated in time and space. Such cor-
related fluctuations would increase the likelihood that a
spontaneous spike generated by one neuron could elicit a
cascade of synchronized action potentials in its diffusively
coupled neighbors. An anonymous referee has pointed out
that the successful recruitment of prepared neighbors may
require very fine tuning of both noise intensity and nearness
to threshold—requirements that may turn out to be biologi-
cally unrealistic. Notwithstanding this caveat, if our ideas are
correct, then neurons might be capable of accessing two
quite distinct communication channels: a subtle subthreshold
analog communication channel �via gap junctions� prior to
firing, and a pulsed binary channel �via chemical synapses�
once the neuron has crossed firing threshold.

APPENDIX A: SIMULATION OF AN INTEGRATOR
NEURON CLOSE TO THRESHOLD

Our Ornstein-Uhlenbeck treatment for subthreshold excit-
able membranes is only valid when the voltage and recovery-
variable fluctuations—resulting from white-noise
perturbations—are sufficiently small that the contributions
from the nonlinear terms in Eqs. �1� are negligible. If the
fluctuations grow to the point that the neuron crosses thresh-
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FIG. 9. �Color online� Autocorrelation graphs for white-noise-
driven subthreshold cortical neuron �integrator� model at three lev-
els of Idc injected current: �a� 21.4; �b� 20.0; and �c� 0.0 �A/cm2.
Black curves show C11��� theoretical predictions; background thick
gray �online: thick red� curves show autocorrelation results aver-
aged across three nonlinear stochastic simulation runs. As seen in
the noise-free impulse responses in Fig. 3, there is an initial fast-
decaying “needle” that rides on a much more slowly decaying ex-
ponential “shoulder” whose slope becomes more nearly horizontal
as Idc approaches threshold. Although the graphs show excellent
agreement between Ornstein-Ulenbeck prediction and nonlinear nu-
merics, securing this agreement is technically challenging, particu-
larly for graph �a� where the stimulation current is set very close to
threshold—see Appendix A and Table III for further details.
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old, then its behavior abruptly switches over from small-
scale subthreshold linear stochastics to gross-scale super-
threshold nonlinear dynamics: the neuron fires an action-
potential spike. Therefore, in stochastic numerical
simulations designed to test the linear theory, we require that
the neuron remain in its subthreshold regime, and never gen-
erate a spike. However, because the responsiveness �suscep-
tibility� of the subthreshold membrane scales inversely with
the dominant eigenvalue, 	1 �or, for the resonator neuron,
inversely with the real part of the eigenvalue�, close-to-
threshold numerical experiments are particularly challeng-
ing. Not only does 1/	1 determine the subthreshold “gain,” it
also defines the slow time scale over which the response will
persist, and both of these quantities will diverge as 	1→0.

Consequently, a successful close-to-threshold stochastic
simulation requires that the following conditions be simulta-
neously satisfied.

1. The noise stimulation must be sufficiently small that
the neuron does not cross threshold and generate a spike.

2. The experiment must run for sufficient time to capture
the slow dynamics with good fidelity.

3. The time step �t must be fine enough to capture the
fast dynamics set by the second eigenvalue.

In practice, we have found that condition 1 requires that
the noise amplitude be dramatically scaled down for experi-
ments near threshold. For condition 2, a rule-of-thumb for
accurate slow dynamics is that the simulation be run for a
time T�100Tslow, where Tslow=−1/	1. Condition 3 leads to
a Nyquist-like criterion for setting the sampling interval:
�t�

1
2Tfast, where Tfast=−1/	2. �For the resonator membrane,

Tslow=−1/Re�	1,2�, and Tfast=2 / Im�	1,2� is the period of
subthreshold oscillations.�

Table III summarizes the simulation settings used to gen-
erate the three integrator-neuron autocorrelation plots shown
in red �gray in print version� in Fig. 9. As the dc stimulus
current was increased from 0.0 �Fig. 9�c�� to 21.4 �A/cm2

�Fig. 9�a��, the experiment duration was increased by an or-
der of magnitude to cater for the predicted 	�10 dilation of
the Tslow time scale, while the intensity �variance� of the
white-noise sources was scaled down by a factor of 1000 to
reduce the chance of spike generation. The measured auto-
correlation statistic was subsequently scaled up by the same
factor to allow comparison with the default noise intensities
used for the Idc=0 run.

APPENDIX B: TAYLOR-SERIES ANALYSIS
FOR MAMMALIAN NEURON

The noise-free form of the Wilson mammalian neuron is
given in Eq. �4�; explicit polynomial expressions for sodium
conductance gNa�V� and recovery steady state G�V� are listed
in Table I. Since we are interested in the �v ,r� fluctuations
about a nominated steady state �Vo ,Ro�, we write �V ,R�
= �Vo+v ,Ro+r�, and make a two-variable Taylor expansion
about this steady state,

F1,2�V,R� = F1,2�Vo,Ro� + v� �F1,2

�V
�

o
+ r� �F1,2

�R
�

o

+
1

2
v2� �2

�V2F1,2�
o

+ vr� �2

�V�R
F1,2�

o

+
1

2
r2� �2

�R2F1,2�
o

+
1

6
v3� �3

�V3F1,2�
o

+ ¯ ,

�B1�

where all partial derivatives are evaluated at the �Vo ,Ro�
steady state, and F1�Vo ,Ro�=F2�Vo ,Ro�=0. Because F1 is a
cubic polynomial in V, and F2 is a quadratic polynomial in
V, the higher-order terms denoted �¯� are all zero. Therefore
this Taylor expansion is exact for all values of �v ,r�, and, in
particular, there is no requirement here that the �v ,r� fluctua-
tions be small.

Evaluating Eq. �B1� and simplifying, we obtain a pair of
coupled equations for the membrane voltage and recovery
fluctuations whose form allows us to identify clearly the lin-
ear and nonlinear contributions to the motion,

dv
dt

= J11v + J12r + k1v
2 + k2vr + k3v

3, �B2a�

dr

dt
= J21v + J22r + �1v

2. �B2b�

The four Jmn coefficients are the elements of the Jacobian
matrix evaluated at the equilibrium point. The coefficients
for the nonlinear terms are

k1 = �− a2�3Vo − ENa� − a1�/C ,

k2 = − 26/C ,

k3 = − a2/C ,

�1 = b2/�R,

where a1=47.58, a2=33.8, b2=3.30, ENa=0.48, C=1.0, and
�R=5.6 �see Table I for units�. The k1 constant is positive.
For large fluctuations, dv /dt�k1v2, and the voltage pertur-
bation will grow faster than exponentially �in fact, the
growth will be hyperbolic—see Gerstner and Kistler’s de-
scription of the quadratic integrate-and-fire neuron on p. 99
of Ref. �8��. The v2 nonlinearity is the primary driver for
spike initiation in this model. The k3v3 term cuts in later and
more steeply, but, because it is negative, it acts as a delayed
restoring force to cancel the hyperbolic divergence of the
k1v2 term. The k2vr term is the nonlinear coupling respon-
sible for speeding and shaping the down-stroke of the spike.

Since the selected equilibrium point is stable, all four
Jacobian elements are negative. If the nonlinear terms v2, vr,
v3 are negligible, then the linear terms will drive an expo-
nential decay to steady state on time scales Tslow and Tfast
determined by 	1 and 	2, the dominant and second eigenval-
ues of the Jacobian matrix: Tslow=1/ 	1, Tfast=1 / 	2. For
example, setting the stimulus current to Idc
=0.214 752 886 070 6788 �in units 102 �A/cm2� renders a
stable bottom-branch steady state that is exceedingly close to
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the saddle-node annihilation point. At this location, the time
scales are Tfast�0.196 ms and Tslow�28.363�106 ms
�7.9 h�!�. According to the guidelines established in Appen-
dix A, one would need to simulate a 	790-h or 	1-month
interval at 	0.05-ms resolution in order to adequately cap-
ture the full extent of the critically slowed fluctuation statis-
tics.

We wished to establish the relative importance of the lin-
ear and nonlinear terms of Eqs. �B2�, particularly for a neu-
ron very close to threshold, so we ran a large number of
stochastic simulations with dc current settings ranging up to
and including the precise 16-digit value listed in the previous
paragraph. For moderate levels of noise, the fluctuations rap-
idly became large, with growth of the nonlinear terms
swamping the linear relaxation, leading to the prompt gen-
eration of an action potential.

Spike onset could be delayed by scaling back the noise,
making it possible to examine in “slow motion” the prelude
to spike formation. It became clear that as soon as the non-
linear contributions to the rate-of-change became compa-
rable to the linear contributions, subsequent generation of a
spike was almost inevitable: the nonlinear terms destabilize
the equilibrium, while the linear terms stabilize it.

We conclude that a noise-driven subthreshold Wilson neu-
ron can only remain subthreshold when the fluctuations re-
main sufficiently small that the nonlinear contributions are
negligible. It is for this reason that the linear Ornstein-
Uhlenbeck analysis presented in this paper provides an accu-
rate description of the subthreshold neuron: the stochastic
resting neuron is linear; the dynamic spiking neuron is non-
linear.
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